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1.0 Introduction

Over the past decade, the Air Force Research Laboratory (AFRL) Antenna
Technology Branch at Hanscom AFB has employed the simple genetic algorithm (SGA) [1]
as an optimization tool for a wide variety of antenna applications. Over roughly the same
period, researchers at the Illinois Genetic Algorithm Laboratory (IIliGAL) at the University
of Illinois at Urbana Champaign have developed GA design theory and advanced GA
techniques called competent genetic algorithms—GAs that solve hard problems quickly,
reliably, and accurately [2]. Recently, under the guidance and direction of the Air Force
Office of Scientific Research (AFOSR), the two laboratories have formed a collaboration, the
common goal of which is to apply simple, competent, and hybrid GA techniques to
challenging antenna problems.

This paper is organized as follows. Section 2 is essentially a survey of the SGA-
related research projects and experiments conducted at AFRL Hanscom over the past decade.
This research covers diverse areas of interest, including array pattern synthesis; antenna test-
bed design; gain enhancement; electrically small, single, bent-wire elements; and wideband
elements. A review of fundamental SGA concepts, including a description of common
parameters and operators, is provided as a brief tutorial. At the end of the section, we
summarize our accomplishments and highlight some of the more interesting insights we’ve
gained (as a direct result of our research) concerning SGA implementation and application.

Section 3 describes the optimization of a constrained feed network for a linear array.
Both a simple and competent GA were applied to this problem in an effort to find a solution
that meets the system requirements/specifications. The section starts by briefly reviewing the
design theory and design principles necessary for the invention and implementation of fast,
scalable genetic algorithms. A particdlar procedure, the hierarchical Bayesian optimization
algorithm (hBOA) [3-6] is then briefly outlined. This section also describes three variations
of the objective function that were implemented in this experiment. Following this, we
present the results, demonstrating that the problem was sufficiently difficult that acceptable
solutions were not obtainable using the SGA (regardless of the objective function used).
Computationally, hBOA finds solutions that meet those of the SGA in all three cases.
Electromagnetically, the first two cases did not exhibit solutions with sufficient sidelobe
rejection. In case 3, min-max solutions using hBOA were able to give sidelobe rejection of -
27dB, whereas the SGA got stuck in far inferior local optima. We analyze the performance
of the SGA and hBOA for all three cases in order to gain insight into the inherent strengths
and weaknesses of these approaches. This case study demonstrates the utility of using more
advanced GA techniques to obtain acceptable solution quality as problem difficulty increases.

Finally, in Section 4, we summarize the paper and discuss future collaborative efforts
between the two laboratories.



2.0 Application of Simple Genetic Algorithms (SGAs) to Antenna Design and Array
Optimization

2.1 Introduction

Although the existing literature has many examples of simple genetic algorithms
(SGAs) applied to antenna design [7], this section focuses solely on research conducted at the
Air Force Research Laboratory (AFRL) Antenna Technology Branch. The Antenna
Technology Branch is part of the AFRL Sensors Directorate Electromagnetics Technology
Division, which is located at Hanscom AFB, MA. Over the past decade, the AFRL Antenna
Technology Branch has employed several variants of the SGA as optimization tools for a
wide variety of antenna applications. This work covers diverse areas of interest, including
array pattern synthesis; antenna test-bed design; gain enhancement; electrically small, bent-
wire, single element design; and wideband element design.

Before we begin, it is worth clarifying two terms that we use throughout Section 2 in
discussing our application of SGAs to antenna design and optimization. In antenna
optimization, we start with a basic antenna-problem formulation resulting from conventional
antenna theory and wisdom. Here, the SGA is applied to an existing solution and used to
fine-tune the outcome. For example, we may initialize a structure as a type of Yagi antenna
and use the SGA to find the best element spacing and lengths for a desired gain and overall
boom length.

In contrast, genetic antenna design implies that we start from scratch with only some
basic materials and problem constraints; the shape of the solution itself is not pre-determined.
As the SGA explores the solution space, the actual structure and shape of the antenna
emerges, sometimes resulting in a well-know antenna solution, such as a top-loaded structure.
Other times, novel structures are created, which may yield insight into the basic physics of
the problem space itself.

The remainder of this section is outlined as follows. Section 2.2 is provided as a brief
tutorial for the reader. Here, we review fundamental SGA concepts, including a description
of common parameters and operators. Section 2.3 is essentially a survey of the SGA-related
research projects and experiments conducted at the AFRL Antenna Technology Branch over
the past decade. Section 2.4 summarizes our accomplishments and highlights some of the
more interesting insights we’ve gained (as a direct result of our research) concerning SGA

implementation and application.




2.2 Simple Genetic Algorithm (SGA) Tutorial

A genetic algorithm (GA) is an optimization technique modeled after the genetic
process used by living organisms. In nature, the instructions for the design of each living
organism are contained within the chromosomes of that organism. These instructions are
coded into a sequence of genes on long strands of DNA. A number of these strands make up
the entire instruction set from which an organism is designed and maintained throughout its
lifetime. Chromosomes and their resulting organisms go through a number of important
processes: birth, survival-of-the-fittest, mating and the production of children, and death.
Thus, a species of organism adapts itself to its environment.

In a similar manner, designs in just about any engineering discipline can be reduced to
a number of instructions or specifications: lengths, diameters, materials, or other
characteristics. = A GA encodes these instructions/specifications along an artificial
chromosome. Basically, a procedure designed to mimic the life cycle of an organic organism
is used to optimize the chromosome to a specific objective or set of objectives (i.e., desired
cost of final system < $5,000, desired engine efficiency = 96%, etc.). For the purpose of this
paper, genetic algorithms can be divided into two broad categories: simple genetic algorithms
(SGAs) and competent genetic algorithms. The term “competent GAs” has been used to
describe GAs that solve a large class of optimization problems in scalable manner and will be
addressed in Section 3. A brief tutorial on SGAs is presented below (for a much more
detailed description, one should consult [1].

First, a chromosome is designed to encode potential solutions to the problem, often as
a string of binary or real values. In Figure 1, we show an example of a chromosome used to
encode the Cartesian coordinates that represent the nodes of a bent-wire antenna. The GA
starts with a large number of randomly generated chromosomes. These chromosomes are
essentially a pool of potential design configurations, where each chromosome represents a
different design. The range of possible designs is determined by the constraints of the
problem, as well as the manner in which the design parameters are encoded along the length
of the chromosome.

The cost or objective function compares each potential solution to a set of objectives,
assigning each chromosome a fitness value. This provides a means of ranking chromosomes
from best to worst. In antenna design, for example, the individual chromosomes are first
decoded to extract the values of the design parameters. These parameter values are then fed
into an electromagnetic simulator to determine the antenna performance. The fitness value is
computed by directly comparing the simulated performance to the desired performance. It
should be noted that some properties might be weighted more heavily than others in the
calculation of the fitness value (i.e., the designer may feel that a low voltage-standing-wave




ratio (VSWR) is more important than minimizing the amount of material used to build the
antenna).

The SGA begins the evolutionary process with an initial (usually random) population
of chromosomes, as shown in Figure 1. This population represents a small subset of the set
of all possible solutions to the problem. Next, the objective function ranks the chromosomes
from best to worst. Then, chromosomes are selected from the population in a pseudo-random
manner, such that high-ranking chromosomes have a higher probability of being chosen.
These chromosomes, the parents of the next generation, undergo a mating or recombination
process to produce children. Offspring can be created through many different procedures,
each of which is essentially a method of combining information from two or more parent
chromosomes to form a child that has the potential to outperform its parents.

The children are passed to a mutation operator, which is essentially a mechanism by
which information encoded along the chromosome is randomly altered. For binary-encoded
chromosomes, this is usually a bit-flip, as shown in Figure 1. For real- valued encoded
chromosomes, this may be accomplished by adding Gaussian noise or other types of offsets
to the current value of the parameter in question. The purpose of mutation is to recover lost
genetic information that may not be present in the initial population and is not obtainable by
recombination alone. Following mutation, the next population is evaluated and ranked, and
the process continues as shown in Figure 1. With succeeding generations, the quality of the
strings continues to improve until an acceptable solution is found or convergence occurs (ie,
solutions do not continue to improve).

In essence, selection, recombination, and mutation work together to combine small
pieces of salient information (called building blocks) from different chromosomes to form
“good” solutions. When SGAs work well, chromosomes containing good building blocks
will, on average, outperform chromosomes containing inferior building blocks. Thus, each
successive generation is populated with chromosomes containing more and more good
building blocks (i.e., better quality solutions). The goal of the SGA is to ultimately find a
chromosome that is comprised of the best building blocks (i.e., an optimal solution to the
problem). When a SGA converges to a non-optimal solution, it is either because crossover
does not exchange the correct material or mutation does not explore the proper material. It
has been demonstrated that premature convergence due to mining failure is primarily due to a
poor match between encoding and genetic operators [1,2]. It will be shown in the second half
of this paper that competent GAs are able to learn a good match between operators and
encoding during the process of evolution, which effectively eliminates many of the
difficulties and pitfalls of SGAs. That being said, it should be noted that for many problems,
a SGA proves to be an effective search mechanism that is capable of obtaining solutions that

meet or exceed the objectives set by the user.




2.3 Survey of Projects and Experiments

This section is essentially a survey of the SGA-related research projects and
experiments conducted at the AFRL Antenna Technology Branch over the past decade. This
work covers diverse areas of interest, including array pattern synthesis; antenna test-bed
design; gain enhancement; electrically small, bent-wire, single element design; and wideband
element design. The common thread that ties these projects together is the implementation of
a SGA to either design or optimize an antenna or array of antenna elements; however, these
projects represent a wide range of problem difficulty. Thus, we will see that some of these
experiments were able to achieve acceptable solutions from the initial SGA parameter
choices, whereas other projects required an in depth analysis of the SGA mechanics in order
to obtain high quality solutions. Projects that fall into the latter category reveal interesting
insights into SGA implementation/application.

2.3.1 A Circularly Polarized Antenna with Hemispherical Coverage

In this section, we describe a vehicular wire antenna that may be used for both the
GPS and Iridium systems [8]. At the time of this experiment, the top priorities in GPS
antenna design were dual-frequency operation at 1225 MHz (i.e., L2 precision code) and
1575 MHz (i.e., L1 coarse acquisition), the gain of the radiation pattern near the horizon, and
the use of circular polarization. The Iridium antenna had similar requirements for the
frequency band from 1610 to 1625 MHz. Thus, an antenna was designed (using a SGA) to
operate over the band from 1225 to 1625 MHz. For comparison, four previously designed
GPS receiving antennas were examined: a circularly polarized patch antenna; an array of
square, helical antennas; a quadrifilar helical antenna; and a conical, spiral antenna {8]. The
conical, spiral antenna provided the most promising results; however, this antenna had to be
placed on lossy absorbing material and was approximately 2 wavelengths in height.

The antenna configuration was simulated using the Numerical Electromagnetics Code
(NEC) [9]. A SGA worked in conjunction with NEC to optimize the antenna parameters.
The optimized design was then fabricated and tested. The antenna, which consists of 5
copper-tubing segments connected in series, is shown in Figure 2. It fits in a volume
approximately 10 cm X 10 cm X 15 cm. The input VSWR and the circular-polarization
radiation patterns were computed and measured and are shown in Figures 3 and 4. The
VSWR was under 2.2 at the design frequencies of 1225, 1575 and 1625 MHz. The gain
varied by less than 12 dB for a 170° sector (it generally fell off near the horizon, so the
variation was less for 150° and 160° sectors). Thus, the crooked-wire antenna developed by
the SGA has characteristics that are comparable to those of the conical spiral at both GPS L1
and L2 bands and also operates over the Iridium band of 1610-1626.5 MHz. In addition, it is



much smaller than the conical spiral and does not need absorbing material. It is a very
inexpensive antenna, since it is fed directly from a coaxial cable and does not require multiple
inputs or a phasing network to achieve circular polarization.

2.3.2 An Electrically Small Antenna

One of the major limitations of electrically small antennas is the following: as the size
of the antenna decreases, its radiation resistance approaches zero, and its reactance
approaches plus or minus infinity. Therefore, most small antennas are inefficient and non-
resonant and thus require matching networks. In this investigation, we searched for resonant
wire shapes that best utilize the volume within which the antenna is confined [10]. The
parameter that best characterizes the performance of a small, resonant antenna is the quality
factor, Q. In general, the lower the O, the more broadband the antenna. A SGA was used to
optimize several bent-wire, antenna configurations (over a ground plane), each having from 2
to 10 wire segments. The antennas were optimized for a resonant frequency near 400 MHz
and then built and tested. In FIGURE 5, we show a ten-segment antenna that fits in a cube
with a side length of 0.0374. As the cube size deceased from a side length of 0.0964 to
0.0264, the computed value of Q increased from 15.8 to 590. The measured Q increased
from 16.0 to 134 for cubes with side lengths of 0.0934 to 0.0374. A plot of the Qas a
function of antenna size is shown in FIGURE 6.

This process for designing small antennas produced novel, self—resonant antenna
configurations. Using intuition, it would seem that the wires should be arranged so that they
are orthogonal wherever possible; also, nearly parallel wires that are too close together should
be avoided, thus minimizing the transmission-line currents that increase the antenna Q. Upon
examining the resultant antenna designs, it seems as though the SGA converged to
configurations that incorporate these principles. The preliminary results were very
encouraging. These antennas are very inexpensive and can be easily fed from a coaxial line.
Since they are self-resonant, the only matching that is required is an impedance transformer.

2.3.3 An Ultra Wideband Antenna

In this experiment, we designed an antenna that operates over very wide bandwidths
[11]. A compact antenna consisting of a set of wires connected in series, and with impedance
loads inserted in the wires, was designed and then measured. The shape of the antenna and
the location of the loads and their impedances were optimized using a SGA. The resultant
antenna, shown in Figure 7, was mounted over a ground plane. This antenna is elliptically
polarized and demonstrates near hemispherical coverage. It has a VSWR that is under ~4.5

6




over the 50 to 1 band from 300 to 15000 MHz, as is seen in Figure 8. The VSWR, radiation
patterns, and antenna efficiency were simulated, and the VSWR was also measured. It was
found that the main limitation on ultra wide bandwidths occurs at the lower frequencies.
There does not appear to be a limitation on the VSWR at the higher frequencies. We covered
a 50 to 1 band, and we could certainly have extended that band higher. The radiation patterns
do, however, become multi-lobed as the frequency is increased, and this is usually not
desirable. The antenna efficiency is lowest at the low frequencies but becomes higher with
increasing frequency. Future plans are to incorporate the radiation pattern into the objective
function of the SGA (in addition to the VSWR).

2.3.4 Genetic Yagi Antennas

The Yagi antenna (shown in Figure 9) evolved as a special configuration of an endfire
array. Itis a traveling-wave antenna with a surface wave that propagates along the array with
a phase velocity slightly less than that of free space. Prof. H.Yagi and his student, S. Uda,
first proposed this concept in the late 1920’s. The configuration consists of a single, driven
element and a number of parasitic elements (consisting of a reflector and a set of directors).
The Yagi has been exhaustively investigated, both theoretically and experimentally, for many
years. The Yagi has not been amenable to theoretical analysis, since it is an array of elements
of different lengths with non-uniform spacing, and thus cannot be treated using conventional
array theory. Most analyses have been restricted to relatively short arrays. Progress
throughout the years for longer arrays has been slow and has been achieved mostly
experimentally and computationally. It is believed that maximum gain is achieved by
controlling the phase velocity of the surface wave. The Yagi structure must be designed so
that the surface wave is properly retarded. This has been accomplished with some success by
logarithmically tapering the elements — the director spacing is gradually increased while the
lengths are gradually decreased until they approach constant values at a distance of about 3 or
4 wavelengths from the driven element. Minor changes in the antenna configuration have
produced only a small improvement in performance.

To illustrate the concept of a genetic Yagi (e.g., the design of an improved Yagi
configuration using a SGA), we present two applications. For the first, we chose to maximize
the gain of four Yagi antennas with boom lengths ranging from 3.6 to 6.14 at a frequency of
432 MHz. VSWR was of secondary importance, and back and sidelobes were not included in
the optimization [12]. A sketch of the approach that was used to design a Yagi is shown in
Figure 10. We compared these designs with those that were obtained using the best design
techniques currently available. The gains, radiation patterns, and VSWRs of both
conventional and genetic Yagi antennas were computed using the Numerical
Electromagnetics Code (NEC). Some of these designs, namely those antenna configurations



having a boom length of 5.164, were fabricated and tested. The SGA produced
configurations that were quite different from typical Yagis. The conventional Yagi has
directors that start out with lengths that gradually decrease and spacing that gradually
increases along the array. The genetic Yagis had elements with lengths and spacing that did
not show any systematic change along the antenna. Yet, the genetic Yagis had computed
gains that ranged from 0.4 to 1.1 dB higher than those of the conventional Yagis at the design
frequency of 432 MHz. The measured gain of the genetic Yaigi (with a boom length of
5.164) was 0.8 dB higher than the corresponding conventional Yagi (as shown in Figure 11).

For the second application, the most important design goal was that the antenna
operate over the band from 219 to 251 MHz and have sidelobes and backlobes at least 25 dB
down in the azimuth plane for 70° < ¢ < 290°. Of lesser importance was that the E- and H-
plane beamwidths be approximately 50°. The desired VSWR was under 3.0, and the desired
gain was specified to be consistent with the beamwidth. T he feed was mounted over a 1.17-
meter square ground plane with a side length of 0.924 at center frequency. The SGA
produced a configuration that was quite different from one that would have been obtained
using conventional methods. Typical Yagi designs have directors that are about 0.44 in
length and 0.35A in spacing; the lengths become slightly shorter and the spacings become
slightly larger the further the distance from the driven element. The genetic Yagi had 13
elements (plus the ground plane) with a boom length of only 1.1 1A. The directors varied in
length from about 0.254 to 0.44 with an average spacing of less than 0.14. A conventional
14 element Yagi has a boom length about 3 times as long.

2.3.5 Simple Genetic Algorithm Array Pattern Synthesis

In this section, we describe the application of a SGA to an antenna-array, pattern
synthesis problem. First, we give a brief overview of the problem. Next, we present the
experiment and results. Then, we focus our attention on the implementation of the SGA
itself, highlighting some of the more interesting parameter choices. Finally, we summarize

our findings and conclusions.

Typical operation of an antenna array requires the user to specify a set of complex
weights that are applied to the individual elements of the array. The signals emitted from the
elements combine constructively and destructively to produce a far-field radiation pattern,
which varies as a function of angle. There is a one-to-one mapping between the element
excitations and the far-field radiation pattern. For many array geometries, closed-form
solutions are available to allow the user to compute the pattern resulting from a particular set
of excitations. For many antenna applications, however, we wish to solve the inverse
problem. Pattern synthesis is the process by which the element excitations are computed




from a given/desired radiation pattern. For this experiment, we used an array composed of
elements possessing highly non-linear properties. Our objective was to demonstrate that
pattern synthesis could be successfully applied to such nonlinear arrays, thus paving the way
for lower cost array systems (i.e., if manufacturers can relax the tolerance specifications for
antenna elements and array systems, this will translate to reduced cost).

The experimental configuration, shown in Figure 12, consists of an 8-element, linear
array illuminated by a stationary, far-field source. The radiation pattern is measured by
rotating the array along & from —90° to 90°. Each element is an open-ended waveguide
connected to a single, 8-bit digital phase shifter. The objective is to find a set of phase-
shifter settings that will steer the main beam of the radiation pattern to a specified angle.
Figure 13 shows the transfer characteristics for a typical element, including the phase-shifter
response curves (both amplitude and phase), as well as the single-element radiation pattern.
The dotted curve in each figure represents ideal performance. These highly nonlinear
transfer characteristics were our motivation to apply a SGA to this problem. We knew that a
simple gradient-descent optimization approach could easily fall victim to local maxima in
such a treacherous solution space. We saw the SGA as a robust search mechanism capable
of leading us to an acceptable solution. Figure 14 shows experimental results for a case in
which it was desired to steer the main beam of the radiation pattern to -10°. This SGA-
solution not only steers the main beam to the appropriate angle, but it maintains an 8.5-dB
difference between the peak of the main beam and the highest sidelobe level. Although it is
possible to achieve —13-dB sidelobes for a linear, 8—clement, ideal array, we were quite
pleased with this result, considering the highly non-linear properties of the experimental
elements.

In the following paragraphs, we discuss the details of the SGA implementation,
highlighting the more interesting aspects. The chromosome consisted of 64 binary-encoded
bits (i.e., 8 phase shifters X 8 bits/phase shifter as shown in Figure 15). Note that we
arbitrarily chose to encode the phase shifters sequentially from 1 to 8 along the length of the
chromosome. In other words, we could have encoded the phase shifters randomly (i.e., {2 4
7 813 5 6}), or we could have let the first half of the chromosome consist of the 4 most
significant bits from each phase shifter and the latter half consist of the 4 least significant
bits. In theory, we could have picked any one of 2% chromosome representations.

We used a somewhat unconventional mating scheme. The initial population consisted
of 10 chromosomes. Each parent chromosome mated with every other parent to conceive 90
children for a total population of 100. The 10 best chromosomes from each population were
then carried over to the next generation where they became the new parents. We realize now
that this “forced” evolution may have prevented us from exploring valuable regions of the




solution space. By totally excluding less fit individuals from the mating ritual, we didn’t
take advantage of all the available genetic information that each population had to offer.

Initially, our recombination operator consisted of 1-point crossover; however, this
method imposes a bias on bit position such that bits near the ends of the string have much
less of a probability of being traded than bits near the center. By switching to 2-point
crossover, the biases on the string ends were eliminated, resulting in an overall decrease in

convergence time.

It is worth noting that we also employed a gray coding scheme as part of our obj ective
function in an attempt to find higher quality solutions and decrease the convergence time of
the algorithm. The term “Hamming distance” is used to describe how many bits are different
between two binary representations. For example, the Hamming distance between ‘0100
and ‘0101’ is ‘1’ — only one bit is different, the last one. The Hamming distance between the
binary representations of 7 (seven) ‘0111” and 8 (eight) ‘1000” is ‘4’ — all four bits are
different. The trouble with most binary representations is that, for example, although the
numbers 7 and 8 have consecutive integer representations, they are vastly different in binary
representation (i.e., all four bits are flipped). This can cause major problems for a binary-
encoded SGA. If a “good” chromosome has a schema or sub-piece with a value of 7, but a
chromosome representing the ideal solution needs a value of 8, it’s going to require 4
mutations to produce an 8 in that field.

A bit representation is needed in which the Hamming distance between consecutive
values is always ‘1°. In this manner, small amounts of mutation can change parameter values
by small amounts, and the genetic algorithm can slowly fine-tune its solution towards the
ideal without requiring massive amounts of bit-changes. This type of bit representation, in
which the Hamming distance between consecutive representations is always ‘1’ is called a
gray code. In the case of this particular experiment, there is a further condition required by
our binary encoding scheme. Phase represents a cyclic quantity (i.e., it wraps around so that
a phase of 360° is the same as 0°). Our gray code representation for phase must be cyclic, in
that the Hamming distance between the representations of 360 ° and 0° is also ‘1’, and
therefore transitions across the 0°/360° line do not require massive bit changes. An example
of cyclic gray code for 5-bit encoding is shown in Figure 16 (for this experiment we actually
used an 8-bit cyclic gray code, but it is easier to demonstrate this concept with fewer bits).
Notice that throughout the code, the Hamming distance between consecutive entries is always
’1°, as is the distance from the very first and last entry.

In summary, this research has demonstrated the successful application of a SGA to an
array pattern synthesis problem when the individual elements possess highly nonlinear
properties.  Despite choosing an arbitrary chromosomal encoding and using an
unconventional mating scheme, we were still able to obtain an acceptable solution — no
doubt a testament to the robust nature of the SGA as an efficient optimization tool. Although
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this experiment was not aimed at analyzing SGA performance quantitatively, we did observe
that our switch from 1 to 2-point crossover, as well as our gray encoding of the phase
shifters, resulted in a decrease in the overall convergence time of the algorithm.

2.3.6 Antenna Pattern Control of Phased Array Antennas

In this section, we describe two SGA applications related to antenna pattern control of
phased-array antennas. The first application is experimental and incorporates measured array
output power into the SGA objective function. Two very different types of array antennas are
used in these experiments. The second application is a theoretical antenna pattern synthesis
problem that incorporates the mean square error between the desired pattern and a predicted
(simulated) pattern into the cost function. The first application addresses interference
rejection, i.e., the formation of a null (or deep minimum) in the antenna pattern to suppress
undesired signals in the antenna sidelobe region [13, 14] and also addresses array beam
calibration and beam steering [14]. In both cases, the SGA adaptively adjusts phase shifters
to obtain results. For the theoretical problem, a SGA was used to determine the coupling
coefficients of quadrature hybrid couplers (used in the constrained feed network of a single
subarray of a phased-array antenna) needed to produce a suitable subarray pattern [15, 16].

In the first application, a desired signal enters the main beam, and interfering signals
enter the sidelobes. The SGA is implemented on a PC that controls an eight-element
cylindrical array [13]. An adaptive, phase-only SGA used in the theoretical simulation of a
linear array has been reported previously [17]. We extend that research to an experimental
cylindrical array developed by the Air Force Research Laboratory (AFRL) Antenna
Technology Branch [13]. Eight active elements of the cylindrical array are connected via a
corporate feed to a power combiner. The SGA only has access to the received power out of
the power combiner, not the element signals themselves. As shown in Figure 17, each
element is connected to a single channel containing an eight-bit phase shifter. There is also
an eight-bit attenuator in each channel. Since the attenuator adjustment was not used for
nulling, we limit the rest of the discussion to phase control. The attenuators were used to
establish a 25-dB Taylor quiescent pattern (without nulling). The four highest order bits of
each phase shifter were set to steer the beam to broadside and to quiescently compensate for
array curvature and feed-path length difference, i.e., beam collimation (see the paragraph
after the next for an explanation of why the four highest order bits were used).

The SGA is coded such that the phase-shifter settings evolve over time until the
antenna pattern has a null in the jammer direction. A genetic algorithm was chosen for this
problem because it is an efficient method for searching large numbers of phase settings [18].
An adaptive array has 2"F possible phase-shifter settings, where N is the number of elements,
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and P is the number of phase-shifter bits used for nulling. Many of these settings correspond
to local minima in the output power. For the cylindrical array, N = 8 and P = 4 (see
following paragraph), therefore, there are 2°2_ or 4.29 x 10°, different settings for the nulling
bits. Such a large number of potential settings renders random search and gradient-based
algorithms impractical.

An adaptive algorithm (in our case a SGA) modifies quantized phase weights based
on the measured output power of the array. The goal of the adaptive array is to minimize
output power. With no interference, the algorithm would minimize the desired signal. We
mitigated this effect by using a limited number of digital phase-shifter bits. Using the four
lowest order bits for nulling allows formation of nulls in the sidelobe region without
significant impact on the main beam (desired signal). The SGA operates only on the nulling
bits, while the higher order bits are left unchanged. The higher order bits perform beam

steering and beam collimation functions.

A flow chart of the SGA is shown in Figure 18, where an initial population matrix is
filled with random ones and zeros (i.e., parents of first generation). Each row of the matrix (a
chromosome) consists of P nulling bits (genes) per element placed side-by-side N times;
therefore, there are NP columns and M rows. The output power corresponding to each
chromosome is measured and placed in a vector. The process for minimizing measured
output power is illustrated in detail (at the bit level) in Figure 19 where, for simplicity, we
show a two-element array using P = 2 nulling bits and M = 4 chromosomes. In the
experiment, a relatively small population (i.e., M varied from 12 to 20) performed well. As
shown in Figure 19(a), the nulling bits are sent to each element phase shifter, and the array
output power corresponding to each chromosome is measured. The chromosomes are ranked
from lowest to highest output power in Figure 19(b), and the bottom 50% are discarded. The
remaining “best” 50% of the chromosomes are mated pair wise (i.e., one to two, three to four
and so forth) to produce the same number of children as parents.

Through mating, we replenish the discarded bottom 50%. In the example of Figure
19(c), mating produces M/2 = 2 children (chromosomes). We use 1-point crossover, such
that nulling bits to the right and left of a break point are swapped leaving each child with a set
of bits (genes) from each parent. For simplicity, in Figure 19(c), we show the breakpoint at
the mid-point of each parent chromosome; however, in practice the break point is selected
randomly. The two new chromosomes replace the two chromosomes that were discarded.
When enough new chromosomes are created to replace the discarded ones, the output power
corresponding to each new child chromosome is measured, and all chromosomes are again
ranked by power. A small number (less than one percent) of the nulling bits are mutated —
toggled randomly from a one to zero or zero to one. Mutation allows the algorithm to try
new areas of the search space while still converging to a solution. Note that the “best” phase
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setting (corresponding to minimum power) is not altered. This overall process is repeated
until an appropriate convergence criterion is met.

The SGA was used to suppress a continuous wave (CW) interfering signal located 45°
from the broadside (0°) main beam of the array. The quiescent broadside pattern is shown
superimposed on the adapted pattern in Figure 20. The null at 45° is below the receiver noise
floor, and the SGA cannot improve it further. We used a total population of M = 16
chromosomes, and the algorithm converged quickly (i.e., within only a few iterations). The
adapted pattern has increased sidelobes (over quiescent) at  —45°, which is characteristic of
phase-only nulling.

An identical SGA technique was used to produce a null in the array pattern of a
second experimental phased-array antenna. The antenna was designed for a space experiment
on a satellite and consisted of a linear array of four subarrays, each controlled by a six-bit
phase shifter [14]. An interfering RF source was aligned at 20° off broadside, and a SGA was
used to minimize the measured output power of the array. An initial population of 16
chromosomes was used, and the eight poorest performers (highest output powers) were
discarded every iteration. GA-generated phase-shifter settings were used to produce the array
pattern in Figure 21 with a null 20° off broadside.

Our SGA technique was also used to scan the array main beam. In this case, we
maximized measured output power. Our objective was to scan the main beam to 15°. When
we used phase-shifter settings, which were determined from the theoretical phase gradient
across the array, in conjunction with a look-up table of phase shift versus digital control
word, we obtained a poor quality pattern with very high sidelobes. As an alternative, we
simply rotated the array off broadside by 15° and maximized output power. The GA phase-
shifter settings resulted in the improved array pattern shown in Figure 22.

The second SGA application involved the design of a constrained feed network. The
feed network determines the antenna pattern of a subarray, which is part of a larger phased-
array antenna [15, 16]. The SGA cost function is illustrated in Figure 23 and is the sum of
the shaded areas. The SGA secks to minimize these differences. The synthesized (simulated)
pattern is a function of the four coupling coefficients (there are eight coupling coefficients;
however, only four are independent) in a set of hybrid couplers used in the network. Each
coupling coefficient is parameterized as a digital word, and the four digital words (one for
each coupling coefficient) form a chromosome. The SGA was used to obtain coupling
coefficients that resulted in an acceptable subarray antenna pattern as shown in Figure 24.
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2.3.7 Advances in Electrically Small Antennas

After we had compared some of our 1%-generation electrically small antennas (see
Section 2.3.2) [19-21] to the conventional electrically small spiral helix, it became evident
that we had only succeeded up to a certain point. The goal of the genetic, electrically-small,
bent-wire antenna effort had been to create a single, bent-wire antenna structure having the
lowest possible VSWR when matched to 50€2 for a given cube size. We had also imposed
the following additional constraints: the antenna could consist of only a single wire, and
pieces of the antenna within the cube could not touch the ground plane or each other.

At cube sizes of 0.044 and smaller, we discovered that certain conventional antennas,
such as the spiral helix, provided a better (lower) VSWR than our best genetic antennas
designed up to this point. Visually, there was also a striking difference — the helixes were
smooth and curvy, while our 1¥-generation genetic antennas were straight-lined and angular.
While one might argue that simply adding more wire segments to the structural
representation of the antenna would allow for the automatic generation of more-curvy
geometries, this was not the case. Altshuler and Linden reported in [19,21] that the addition
of more wires did not improve the solution and, in fact, degraded it.

It became clear that we had not reached the limit of electrically small antenna design;
rather, our SGA had become limited in some manner. This prompted us to investigate
different chromosomal encodings/representations in an attempt to obtain better solutions to

this design problem.

2.3.7.1 Coordinate Chromosome Representation

Our original method (Section 2.3.2) of encoding the antenna design was such that the
antenna structure was represented as a fixed number of straight wire segments connected in
series at their endpoints (called “nodes™). The x, y, and z Cartesian coordinates for each node
were encoded along the chromosome, as shown in Figure 25. This encoding scheme
originally used 5-bits for each coordinate. However, in subsequent research, a real-valued
SGA was utilized, and the coordinates were represented by positive real values [19].

2.3.7.2 Angular Chromosome Representations

As an alternative way of encoding this problem, we modeled the antenna as a single
piece of wire, subdivided into many fixed-length, straight segments. The angular orientation
of each segment was encoded into the chromosome. There were two obvious ways to
represent these angular orientations: in an absolute (i.e., global) fixed spherical coordinate
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system (Figure 26) or relative (i.e., local) to a spherical coordinate system centered on the
vector orientation of the previous wire segment, with the z-axis lying along the segment, as
shown in Figure 27"

There are intuitive pros and cons to each of these sub-models. One might consider
that there exists a strong relationship between the electrical properties of a wire segment and
its orientation to the ground plane (and hence its mirror image). This would favor the
absolute angle representation. However, during mating (or recombination), when a piece of
one chromosome (or antenna) is merged with pieces of another in order to create children for
the next generation, the building block might be better preserved in the relative angle
representation, rather than in absolute terms.

Rather than implementing a real-valued chromosome, we used a cyclic, gray-code,
binary representation. This had the benefit of allowing standard, binary, recombination
operators, while eliminating the Hamming cliffs that occur in traditional binary
representations. An additional benefit of a cyclic gray-code is the seamless cross-over in
angular representation from the highest to the lowest values, i.e., the branch cut at 0°/360°
(See section 2.3.5 for a detailed description of cyclic, binary gray code).

2.3.7.3 Comparison of Chromosome Limitations

While a full discussion of the pros and cons of each approach may be found in [22],
we provide a short summary here to illustrate the importance of a good chromosomal
encoding scheme.

First, not all of these representations are capable of representing all possible bent-wire
antennas. For both Cartesian and spherical representations (absolute and relative angle), the
number of straight wire pieces needs to be determined a priori. While one may argue that if
a sufficiently large number of small pieces were used, a general solution would be possible,
our experimentation showed that only the relative angle representation benefited from using
many small pieces. The performance of both the Cartesian and absolute angle representations
deteriorated when the number of nodes or segments exceeded a relatively small number (like
7-12 pieces). The relative angle representation, however, was successful with pieces as small
as we were able to model; hence, this representation was best able to model antennas closest
to a general solution.

Also notable is the fact that the angular representations require the antenna pieces to
be of equal-length and the total antenna length to be determined a priori, while the Cartesian
representation does not fix the length of the wire pieces or the total length of the antenna.

! For both sub-models, the first azimuth angle was removed from the chromosome and fixed to be zero, to avoid
competing identical solutions rotated around the z-axis. Also, for the relative angle chromosome, the first

segment was represented relative to the z-axis of an initial reference frame.
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These limitations could both be mitigated by expanding the angular chromosomes to include
segment length information (which may be pursued in the future). However, note that equal-
length segments are only a very minor limitation when many very-small wire pieces are used:
short pieces of the antenna structure may be represented by only one or two of the short
segments, while longer pieces are created by aligning the vectors of many short segments.
Aside from the above discussion, other comparisons and limitations concerning these three
representations can be made and are presented more completely in [23].

2.3.7.4 Results for Electrically-Small, Bent-Wire Chromosomes

In Figure 28, we compare the performance of the three chromosomal encodings. We
see that the absolute angle and Cartesian representations performed similarly, but that the
relative angle representation, able to use many small pieces effectively, created curvy antenna
structures, which better met our low VSWR criterion (for a given cube-size). When
compared to the electrically-small, normal-mode helix, it is clear that the relative angle
representation, as presently modeled with a fixed wire length and fixed segment size, is still
not optimal, but is performing much better than previously. In fact, when antennas created by
this method are “smoothed” by hand (i.e., creating non-equal segment sizes), even better
performance is obtained.

Although these very small antennas are difficult to create by hand, the largest one was
built and measured (shown in Figure 29) to verify our simulations. As shown in Figure 28, it

performed as expected.
2.3.8 Hybrid DISS Transmit Antenna

We recently had another opportunity to transfer our research expertise in genetic
antenna design from the laboratory to the operational Air Force when we learned that the
Battlespace Environment Division of the AFRL Space Vehicles Directorate was looking at a
redesign of a transmit antenna used for ionospheric measurements. The Digital Ionospheric
Sounding System (DISS) network is operated by the US Air Force Weather Agency (AFWA)
and the Air Force Research Laboratory (AFRL). Its purpose is to observe the global
jonosphere in real time. Eighteen digital ionosondes are currently deployed worldwide by the
Air Force to provide data for many products, including specification and forecasts of primary
and secondary HF radio propagation characteristics; ionospheric electron density, and total
electron content; ionospheric scintillation; environmental conditions for spacecraft anomalies;
and sunspot number.

DISS was originally built using an off-the-shelf TCI model 613F communications
antenna (shown in Figure 30). This antenna transmits radio signals of different frequencies
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across a specified sweep (2-30 MHz) in a vertical direction; these are then reflected,
absorbed, or distorted by the ionosphere. Co-located receive antennas intercept the returning
signals for algorithmic processing. The current transmit antenna does not exhibit a consistent
gain in the vertical direction for all desired frequencies (Figure 30), although the VSWR
matched at 450Q is excellent across the entire frequency band. Our goal was to determine if
a simple hybrid augmentation to the antenna could increase gain across the bandwidth
without prohibitive costs.

2.3.8.1 Genetic DISS Hybrid Antenna

Conventional antenna wisdom suggested the addition of a six-element, log-periodic
dipole array (LPDA) as a complement to the existing TCI antenna. Although this hybrid
looked promising in simulation, it proved cost prohibitive and mechanically difficult to create
and assemble. We therefore decided to augment the TCI with six new pairs of wire elements,
with one end of each wire connected to the feed line running up the tower, and the other end
open and angled towards one of two new ground stakes. To reduce complexity, we used only
four additional stakes, two per side, leading to the hybrid configuration in Figure 31.
Following the active wire length, we transitioned to an insulator to complete the mechanical
connection. The three highest new wires (L2, L3, and L4) are connected to stake 1, and the
lowest three wires (L5, L6, and L7) are connected to stake 2. The distances of the stakes
from the tower and their azimuth angles relative to the TCI antenna were optimized, in
addition to the active lengths of each wire and the height of the wire on the tower. We
constrained the distance of the stakes to a reasonable value and set a minimum distance
criterion between all wires to avoid sparking conditions.

We modified the antenna hybrid and corresponding chromosome over time as our
genetic optimizations revealed strong and weak points in our model and as construction
requirements changed. We had initially connected the highest wire (L2) to the edge of the
TCI curtain; however, our SGA continually minimized the length of this wire to almost zero,
removing it or rendering it only viable for high frequency contributions. We subsequently
connected L2 to stake 1 (with L3 and L4) and achieved much better performance. We also
did not know whether all of the existing TCI antenna wires were needed or if only a subset
would suffice; however, our optimizations achieved best performance when the entire TCI
curtain was used. We initially varied the load resistance from the original 600< resistors to a
variety of values. However, while our optimizations determined that a higher resistance
(1350Q) increased the overall performance, these were not readily available for our power
requirements, so we decided to either maintain the existing resistors or remove them entirely.
When a new operational constraint was introduced, which required the antenna to be well-
behaved down to 1MHz, the option of removing the resistors was discarded. We also
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compared feeding the new antenna €lements as 1) six independent bent dipoles, 2) two pairs
of 3-element LPDAs or 3) as a six-element LPDA. We found that the independent bent
dipole configurations performed similarly to the LPDA-wired structures and were easier to

model and build.

2.3.8.2 Genetic Algorithm and Optimization Goals

For this antenna optimization problem, a simple genetic algorithm proved sufficient in
obtaining a good solution. We encoded the chromosome (shown in Figure 32) using a
binary, cyclic gray-code in order to avoid the Hamming cliffs that are typically present in
binary representations (see Section 2.3.5). One could argue that a real-valued GA may have
provided greater accuracy; however, when considering our wire lengths (in terms of
wavelengths for the given frequency band) and our field-construction tolerances, the
granularity of a binary representation was not a limiting factor. Our cost function consisted
of a weighted sum of the following: the total effective gain error (i.e., any gain < 3 dBi) and
the total VSWR etror (i.e., any VSWR > 3) across the entire bandwidth; the standard
deviation of the gain error; and the standard deviation of the VSWR error. We included the
standard deviation to avoid large error spikes in either effective gain or VSWR. As shown in
Figure 30, using this figure of merit, the TCI antenna scored ~305.

2.3.8.3 Results

In Figure 32, we show a DISS transmit antenna resulting from the genetic algorithm.
With the 600Q resistors permanently included, our optimization algorithm converged to this
basic shape, with minor variations as we balanced the cost function by adjusting the relative
weighting between gain and VSWR error. This solution yields a similar structure to the
LPDA-augmented TCI in that the new elements are orthogonal in nature. However, where
the former had lower-frequency elements higher up, the genetically designed hybrid places
them lower on the tower. The score of this genetic DISS hybrid greatly exceeds the
simulated scores of the TCL with or without LPDA augmentation, and this hybrid antenna
structure should prove to be an easy retrofit. In March 2004, a genetic DISS hybrid transmit
antenna replaced the existing operational transmit antenna of the DISS station on Ascension
Island. Initial measurements taken by the AFRL Space Weather Center of Excellence with
this antenna confirm that this new design performs up to 10dB better than the original

transmit antenna!




2.3.9 Technology Transfer to Other Applications

While a full review of other GA applications that have resulted from our genetic
antenna research is beyond the scope of this paper, we present here one example of a
technology transfer that resulted directly from our research and our experience with gray
codes and our application of SGAs to antenna pattern synthesis.

2.3.9.1 Reflector Dish Array Pattern Synthesis for RCS Measurements

In 1998-99, scientists from ARCON Corporation (Waltham, MA) successfully
applied a SGA to an array pattern synthesis problem in which gray codes were used to (see
Section 2.3.5) represent phase. This SBIR (Small Business Innovative Research) project
supported the 46™ Test Group (RATSCAT) at Holloman AFB. Among other antenna
initiatives, one goal of the SBIR was to determine if a vertical reflector array could be
configured, on both transmit and receive, to create a flat pattern across a target area for radar
cross section (RCS) measurements as shown in Figure 33. This pattern was particularly
difficult to synthesize, both because of time-dependent, ground-bounce range characteristics
and the need to have as little energy as possible reflected off the support pylon.

The genetic algorithm optimization determined, at X-band, the best relative
amplitudes and phases, heights above the ground, and orientations (i.e., bore sights) of three
identical reflector dishes to produce a desired flat far-field power taper across the target zone
at the pylon range gate. The parameters encoded in the chromosome included the three
amplitudes of the reflector dish feeds; two phase differences referencing dishes #2 and #3 to
dish #1; the heights of the three dish centers; and the bore sight angle deviations within +/- 8°
off a normal bore sight. While a perfect null across the entire pylon area was physically
impossible, the genetic algorithm did produce reflector array configurations which
successfully created flat power tapers across the target area, as shown in Figure 34, while
minimizing power on the pylon [24].

2.4 Conclusions

This section has demonstrated the successful application of the SGA to several
antenna design and optimization problems covering diverse areas of interest — no doubt, a
testament to the robust nature of the SGA as an efficient optimization tool. For some of these
projects, however, a great deal of fiddling with SGA parameters and operators was necessary
in order to achieve acceptable, high quality solutions. In particular, we found that the
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chromosomal encoding scheme has a large impact on the solution quality, as well as the
convergence time. Thus, one of the major drawbacks of using a SGA is that it provides no

method for matching coding and operators.

The next section investigates a new breed of GA, namely a competent GA, for which
genetic operators are no longer arbitrary. In fact, the competent GA is designed to learn the
correlations between different sets of variables encoded along the chromosome. In this
manner, the recombination operator can be designed to exploit these correlations and
minimize the probability of disrupting good “building blocks” while maximizing the
probability of finding a global solution to the problem.

3.0 Optimization of a Constrained Feed Network for a Linear Array: SGA vs.
Competent GA

3.1 Introduction

This section describes the optimization of a constrained feed network for a linear
array. Both a simple and competent GA were applied to this problem in an effort to find a
solution that meets the system requirements/specifications. Section 3.2 starts by briefly
reviewing the design theory and principles necessary for the invention and implementation of
fast, scalable genetic algorithms. A particular procedure, the hierarchical Bayesian
optimization algorithm (hBOA) is then briefly outlined.

Section 3.3 begins with an overview of the optimization problem, including the
antenna system parameters and specifications. Next, we discuss the details of each approach
— SGA vs. hBOA. Here, we describe how each algorithm was applied to the problem. Then
we describe three variations of the objective function used in this experiment. Following this,
we present the results, demonstrating that the problem was sufficiently difficult that
acceptable solutions were not obtainable using the SGA (regardless of the objective function
used). The competent GA, however, was able to obtain an acceptable solution for at least one
of the objective functions. We analyze the performance of the SGA and hBOA for all three
cases in order to gain insight into the inherent strengths and weaknesses of these approaches.

Finally, in Section 3.4, we summarize our results and draw some interesting
conclusions concerning the fundamental differences between simple and competent GAs.

3.2 Introduction to hBOA

The hierarchical Bayesian optimization algorithm (hBOA) [3-6] is one of the most
successful, probabilistic, model-building GAs empowered by Bayesian learning. It has been
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shown that hBOA is capable of solving boundedly difficult problems within a sub-quadratic
number of function evaluations. This subsection provides a brief description of hBOA. To
better understand the motivation behind hBOA, we first give an introduction to GA design
theory and competent GAs. Subsequently, three primary components of hBOA are discussed,
namely (1) the Bayesian optimization algorithm [6,25], (2) learning Bayesian networks, and
(3) conquering hierarchical difficulty [6].

3.2.1 GA Design Theory and Competent GAs

In section 2, we introduced the simple genetic algorithm (SGA) and witnessed its
robust optimization capabilities in a variety of practical antenna problems. A SGA, however,
does not always address the issue of linkage (i.e., chromosomal encoding) adequately. This
was most evident in the electrically-small antenna design of Section 2.3.7 in which different
chromosomal encodings led to very different solutions. This section gives an introduction to
competent GAs — advanced optimization techniques designed to determine the optimal
linkage of bounded, difficult problems in order to find a global, or near global solution within
a sub-quadratic number of function evaluations.

To better understand the concept of boundedly difficult problems, let us first consider
two extreme cases: the OneMax problem and the needle-in-a-haystack problem (NIAH). In
the OneMax problem, the fitness value of a binary chromosome is defined as the number of
ones in the chromosome (the chromosome with the highest fitness value would be of all ones);
in NIAH, the fitness value of some specific chromosome is highest (e.g., 1), and those of all
other chromosomes are equally low (e.g., 0). On one hand, the genes in the OneMax problem
are independent to each others, and hence the OneMax problem is fully decomposable. It is
considered to be a GA-simple problem, and a SGA can easily solve it within a sub-quadratic
number of function evaluations. At the other extreme, the order of linkage in the NIAH
problem is equal to the length of chromosome, and hence the NIAH problem is not
decomposable. The NIAH problem is considered to be GA-difficult, and it has been shown
that no algorithm can do any better than a random search for this type of problem. On
average, it requires an exponential number of function evaluations to find the optimal
solution to the NIAH problem. So we ask ourselves, how efficiently can we solve a problem
that falls somewhere between these two extremes? For example, suppose that we have an
additive NIAH problem, which is merely a concatenation of several bounded-order NIAHs.
Can we find the optimum quickly? More generally, can we design GAs that solve such
nearly decomposable problems quickly, reliably, and accurately?

Using Holland’s notion [26] of a building block, a decomposition methodology has
been proposed for the successful design of competent GAs [2,27,28]:
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Know what GAs process—building blocks (BBs).
Know thy BB challenges—BB-wise difficult problems.
Ensure an adequate supply of raw BBs.

Ensure increased market share for superior BBs.

Know BB takeover and convergence times.

Make decisions well among competing BBs.

Mix BBs well.

NSV R WD

Much work has been done investigating each of these critical categories, including problem
difficulty [29,30], adequate supply [31,32], decision making [33,34], and mixing [35].

Of all the categories mentioned above, effective mixing has been found to be one of
the most essential and challenging issues for GA success, and efforts have been put forth in
developing competent GAs. A number of competent GAs are described in [2] and [36].
These differ primarily in two aspects: (1) the strength of the identification of important sub-
solutions, and (2) the recombination of those important subsolutions into promising solutions.
In this paper, we used hBOA [3-6], one of the most successful competent GAs to date, to
optimize an antenna system. hBOA is described in the next few subsections.

3.2.2 The Bayesian Optimization Algorithm (BOA)

For a given problem, the Bayesian optimization algorithm (BOA) [6,25] evolves a
population of candidate solutions by building and sampling Bayesian networks [37]. The
BOA first generates a population of candidate solutions either randomly or according to some
prior knowledge of the given problem. Subsequently, the population is updated each
generation via the following four steps: :

(1) Promising candidate solutions are selected using a GA-selection operator, such as
tournament selection or truncation selection.

(2) A Bayesian network is built to estimate the distribution of those promising candidate
solutions that were selected by selection.

(3) New candidate solutions are generated by sampling the Bayesian network.

(4) The population for the next generation is generated by incorporating the new
candidate solutions into the original population, replacing part or all of it.

The above four steps repeatedly update the population of candidate solutions until some
termination criteria are met. For example, the optimization procedure can be terminated
when the population contains an acceptable solution to the problem, a bound on the number
of generations is reached, or a bound on the overall computational time is reached.
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3.2.3 Learning Bayesian Networks

This subsection briefly describes how the BOA constructs Bayesian networks during
evolution. A Bayesian network is a network that describes the following Bayesian, joint-
probability distribution.

p(X)=;jlp(X,- 1), )

where X =(X,,X,,...,X,) is a vector of all variables in the given problem, Q, is a set of
X,,and p(X,|Q,) is the conditional probability of X, given Q,.

A Bayesian network can be visualized as a directed, acyclic graph, where the nodes
represent variables and the edges represent conditional dependencies. For instance, the
following Bayesian joint probability can be expressed by the graph shown in Figure 35.

p(4,B,C,D,E) = p(A)p(B)p(C| ) p(D| 4,B)p(E| C,D). )

Learning a Bayesian network consists of two subtasks: (1) learning the structure, and (2)
calculating the conditional probabilities. In BOA, calculating the conditional probabilities for
a given structure is straightforward, because the value of each variable in the population is
specified. The maximum likelihood of the conditional probabilities can be obtained by
simply calculating the relative frequencies observed in the population. To learn the structure,
the current version of BOA adopts a minimum-description-length scoring metric and a greedy
algorithm to search for the structure with the minimal description length. Initially, the
structure is a graph with no edges. The greedy algorithm then updates the graph by one of
the following three operators: (1) edge addition, (2) edge removal, or (3) edge reversal. This
is done under the guidance of the scoring metric. The greedy algorithm terminates when no
improvement can be made.

3.2.4 Hierarchical Decomposition — From BOA to hBOA

Hierarchical structures have appeared in real-world systems and real-world problems
[38]. By hierarchy, we mean that interactions between higher levels are not revealed until
interactions between lower levels have been recognized. We humans often utilize
hierarchical decomposition to solve problems in either a bottom-up or top-down manner.
Hierarchical decomposition adds a new level of decomposition that reduces the problem
difficulty, and hence enables us to solve more difficult problems.

Pelikan [6] recognized three key issues regarding hierarchy success:
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(1) Proper decomposition. At each level, the algorithm needs to be capable of properly
decomposing the problem. A proper decomposition reduces the problem complexity
and hence improves the scalability of the algorithm.

(2) Chunking. Each sub-solution in a lower level can be seen as a chunk. The algorithm
should be capable of properly representing each chunk as one single variable when
solving the next upper level.

(3) Preservation of alternative candidate solutions. Since the interactions at a higher level
do not reveal themselves until the interactions at the lower levels have been
recognized, preserving alternative candidate solutions is important for a hierarchical

problem solver.

By recognizing these three issues, the hierarchical BOA (hBOA) was constructed as follows.
hBOA utilizes BOA to decompose the problem at each level. Chunking is incorporated by
recognizing the local structures in the Bayesian networks. One of the niching techniques,
called restricted tournament replacement [3,6] is adopted in hBOA to preserve alternative
candidate solutions. hBOA has been shown to have a stronger ability than BOA to conquer
hierarchical difficulties [3,6,39].

3.3 Optimization of a Constrained Feed Network for a Linear Array

3.3.1 Problem Statement

This section describes an antenna system designed for space-based and airborne radar
applications. The goal of this system is to produce a far-field radiation pattern having at least
—30-dB sidelobes over a 20% bandwidth. This is accomplished by implementing an
optimized, constrained feed network. The following overview is intended to provide the
reader with enough background information to understand the details of the system
optimization. For further information about the system design and implementation, the
reader is referred to [40].

The following discussion assumes an ideal system. A single section of the system is
shown in Figure 36. At the front end of the section is an N-element, linear array. It can be
shown that when the array is illuminated by a plane wave, the element excitations can be

computed via the following [41]:

—zllndsine
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where n is the element index, A is the wavelength of the incoming plane wave [in meters], d
is the inter-element spacing [in meters], and @ is the angle of incidence with respect to the
normal.

Each element is connected to a single input port of an N by M Rotman lens. Thus, the
element excitations become the inputs to the Rotman lens. It can be shown that the Rotman
lens output signals are described by the following:

N 2—”n sin L
11(6)=Zej‘ e ”), @)
n=1

where i is the Rotman lens output index. Each output signal is then multiplied by a complex
weight, w;.

Next, these signals are input to an M by M Butler matrix, the outputs of which are
computed from:

5.0)=3 1w W) ®

where m is the Butler-matrix output index, and Ay is the center-frequency wavelength of the
system. The center M/2 output signals from each of P sections are time-delayed, weighted
(e.g. fixed weights like a Taylor distribution, efc.), and combined to compute the final
radiation pattern of the system.

In order to optimize the system, the set of complex weights, w;, must be determined
for each of P sections, such that the final radiation pattern exhibits  -30-dB sidelobes over a
20% bandwidth. For our particular system, the specifications and parameter values are as

follows:

o Frequency band of operation: 9.0 — 11.0 GHz
e Center frequency fp = 10.0 GHz (where 49 = ¢/ f5 and ¢ = velocity of
electromagnetic waves in free space = 3 x 10® m/s)
e N=64
e d=054
e M=8
e P=3.
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Figure 37 shows far-field radiation patterns for an ideal system at 9.0, 10.0, and 11.0
GHz. The x-axis represents u-space (where u = sin[ 1), and the y-axis shows the amplitude
of the pattern measured in decibels (dB). The peak of each pattern is normalized to 0 dB.
This system was optimized for a beam-steering angle of 45° (i.e., u = 0.7071) in [40] using
the method of alternating projections. The weights, w;, were assumed to be real-valued and
that weights for a particular index i were assumed identical across the three sections (i.e., ws
for section 1 = ws for section 2 = ws for section 3). Note that when these weights are applied
to the ideal system, the maximum sidelobe level is well below —30 dB across the entire 20%
bandwidth, thus meeting the system requirements.

We built three Rotman lenses and measured the transfer function for each of them.
The inverse-transfer-function of a single lens (for phase only) is plotted in Figure 38. The x-
axis represents the input ports (as seen in Figure 36), and the y-axis measures the unwrapped
phase in degrees. Each shape represents a different output port, where the solid line is ideal
data and the dotted line is experimental data. For example, when output port 1 is excited, the
resulting ideal phase distribution across the input ports is denoted by the solid curve
(squares), whereas the experimental phase distribution is represented by the dotted curve
(squares). (We show the inverse transfer function here rather than the forward transfer
function, because it is easier to analyze and visualize 8 curves versus 64). For comparison
purposes, each phase curve is normalized to 0° at a fictitious input port that lies exactly
halfway between ports 32 and 33. Note that the experimental phase differs from the ideal by
as much as 40°.

These phase deviations between the ideal and experimental Rotman lens transfer
functions have a detrimental effect on the system radiation patterns, as illustrated in Figure
39. For these plots, we replaced the ideal Rotman lens data with the experimental data and
applied the same weights, w; found in [40] for the ideal system. Not only is the integrity of
the main beam compromised, but also the maximum sidelobe level well exceeds the —30-dB
limit across the entire frequency band. In other words, the weights that we successfully
implemented for the ideal system cause the current system to break down. Thus, we need to
re-optimize the system now that the experimental Rotman lens data is incorporated into the
system model. The following section describes our approach to this problem.

3.3.2 Approach
3.3.2.1 Implementation of the Simple Genetic Algorithm (SGA)

This section describes our first optimization approach, which involves the
implementation of a simple genetic algorithm (SGA). Recall that our antenna system consists

of three sections, each containing eight complex weights (i.e., amplitude and phase). Our
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goal then is to obtain a set of 24 complex weights that will allow us to meet the system
requirements outlined in Sec. 3.3.1.

We used the chromosome representation shown in Figure 40. We chose a binary
encoding scheme and chose to represent each complex weight with 16 bits (ie., 8 bits
amplitude and phase). Therefore, the length of our chromosome was: 24 weights X 2
components/weight X 8 bits/component = 384 bits. We arbitrarily chose to encode the
complex-weight amplitudes along the first half of the chromosome and the phases along the
latter half. Both the amplitudes and phases are numbered sequentially along their respective
halves of the chromosome. We restricted the amplitudes to lie in the interval [0 1] and the
phases to lie in the interval [0° 360°]. It is also worth noting that we used an 8-bit gray code
for both the amplitude and phase encoding schemes (for more details about gray coding, see
Section 2.3.5)

At the start of the algorithm, we formed a random population of 200 chromosomes
(parents). Each member of the population was evaluated and ranked (the details of the
objective function will be described in Sec. 3.3.2.3). Then, we formed a mating pool of 200
individuals via binary tournament selection (#-tournament selection is when » individuals are
randomly selected from the population, and the one with the highest fitness is selected for the
mating pool [1]).  Next, two individuals from the mating pool (i.e., parents) were chosen
randomly to create a child via two-point crossover. This process was repeated until 200
children had been generated. Each child was passed to an operator having a constant
mutation rate of 0.005. The children were evaluated, ranked, and proceeded to become the
parents of the next generation. For this experiment, we always ran the SGA for 5,000
iterations with a constant population size of 200 for a total of 1-million objective-function
evaluations.

3.3.2.2 Implementation of the Hierarchical Bayesian Optimization Algorithm (hBOA)

This section describes the implementation and parameter settings of our second
optimization approach—hBOA. The encoding scheme is exactly the same as that used for
the SGA. Each candidate solution was encoded into a 384-bit binary string. Also, gray
coding was used. The population size was set to 5000, and the maximum number of
generations was set to 200 for a total of 1-million function evaluations (i.e., same as SGA
case).

Restricted tournament selection was used. The window size was set to the problem
size (384) to perform niching globally; the tournament size was set to 12 based on empirical
observations. Bit-wise mutation was used, with a mutation probability of 0.005. The
maximum number of incoming edges for a single node in the Bayesian network was limited
to 4 to avoid unnecessary linkage complexity. Elitism was adopted. In each generation,
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parental candidate solutions were evaluated, and the bottom half were replaced by newly

generated offspring.
3.3.2.3 Objective Function

The objective function is essentially a subroutine written in MATLAB, which was
used by both the SGA and hBOA to evaluate potential solutions to the problem (i.e.,
chromosomes). When the user inputs a set of 24 complex weights, the subroutine computes
the corresponding far-field radiation patterns for five discrete frequencies (9.0, 9.48, 10.0,
10.52, and 11.0 GHz). This experiment employed three variations of the objective function,
which are described below as Cases 1, 2, and 3.

Figure 41 shows the objective function for Case 1. The pink curve is a typical far-
field radiation pattern produced by the system for a given frequency and set of complex
weights. The x-axis represents u-space (i.e., sin[ 6]), and the y-axis measures the normalized
amplitude of the pattern in decibels. The black “mask” represents the objective function,
showing a main-beam and sidelobe region. For this case, we perform a point-by-point
subtraction of the mask from the pattern. For a given frequency and set of complex weights,
an error value E; is computed by calculating the mean sum of the squared differences

between the pattern and mask:

E.(w,f,)= Elj-i [pattern, —mask,[* ), (6)

i=1

where w represents the vector of complex weights, f; is the K" discrete frequency, and U
represents the total number of points in the radiation pattern. Note that no penalty is
administered when the pattern lies below the mask in the sidelobe region (i.e., if the
difference between the pattern and mask is negative, it is not used in the computation). In
essence, we’re trying to force the pattern to conform to the mask in the main-beam region
while forcing the pattern to lie below the mask in the sidelobe region. Also note that we are
“gvershooting” by trying to force the algorithm to find a solution with —40-dB sidelobes in
hopes that it will at least be able to obtain —30-dB sidelobes. This lack of efficiency is an
inherent weakness of this approach. The overall Case 1 fitness value, F;(w), is the average of

the error across the entire frequency band:
1 K
Fw)=22E, Q)
k

where K is the total number of discrete frequencies (and is equal to 5 for our experiment).
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Figure 42 shows the general objective function used for both Cases 2 and 3. For Case
2, for a given frequency and set of complex weights, the error has two components, the first
of which is as follows:

Ey, (W’ S )= [1 - pa“em(uo )]2 > ®

where up is the desired steering angle of the pattern peak (up = 0.7071, corresponding to 6=
45°, for this experiment). In essence we need to ensure that the peak of the normalized
pattern in the main-beam region coincides with the desired steering angle uo. The second
error component is as follows:

E,,(w,f,)=[-(-MsL), ©)

where MSL refers to the “maximum sidelobe level” (i.e., the maximum level of the radiation
pattern in the sidelobe region). In other words, we’re trying to maximize the difference
between the normalized pattern peak and the maximum sidelobe level as illustrated in the
Figure 42. The overall Case 2 fitness value, F(w), is the mean summation of the error
components across the entire frequency band:

F=2 2B, +E,y) (10)

It is clear that the objective function for Case 2 involves only two subtractions, rather than a
point-by-point comparison of the pattern to the mask — this property renders Case 2 more
computationally efficient than Case 1. Similar to Case 1, however, the overall fitness value
for a given set of complex weights is the average of the error across the entire frequency
band.

Case 3 is identical to Case 2, except the overall fitness value, F3(w), is equal to the
maximum error across frequency:

FJ(W)=maxk(Ek,l +Ek,2) (11)

In other words, Cases 1 and 2 are aimed at minimizing the mean error across frequency,
whereas Case 3 minimizes the maximum error across frequency. Of the three objective
functions, Case 3 is the most relevant to our particular problem, since we are ultimately
trying to minimize the maximum sidelobe level across frequency.
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3.3.3 Results: SGA vs. hBOA

This section analyzes the results for Cases 1, 2, and 3 by considering the
computational performance of SGA versus hBOA. We also compare SGA and hBOA on the
basis of sidelobe attenuation.

Each case was run three times for both the SGA and hBOA, the results of which are
tabulated below. For convenience, the runs are sorted according to fitness from best to worst.
(Note that for this experiment, we defined fitness such that Jower values correspond to higher
quality solutions. Traditionally, fitness is defined such that higher values correspond to
higher quality solutions). Table 1 contains the results for Case 1. If we compare the
performance of the best run for each algorithm (i.e., Run 1), we see that the overall fitness
value F; is practically identical for the SGA and hBOA. In addition, Figure 43 shows that
there is virtually no difference between the maximum sidelobe levels of the resulting
radiation patterns at 9.0 GHz. Thus, one may be tempted to assume that both algorithms
perform equally well for this objective function. However, it is also evident from the table
that the mean fitness across runs is 33% higher for the SGA compared to hBOA, and the
standard deviation of the fitness across runs for the SGA exceeds that for hBOA by a factor
of 175! These results imply that, given enough runs, the best-quality SGA solution may be
comparable to the best-quality hBOA solution; however, hBOA seems to be a much more

consistent and reliable search mechanism.

Case 2 (Table 2 and Figure 44) exhibits the same general trends as seen for Case 1,
namely the mean of the fitness F across runs is 34% greater for the SGA vs. hBOA, and the
standard deviation of F, across runs for the SGA exceeds that for hLBOA by almost a factor of
4. However, for this case, the best-quality hBOA solution is 28% better than the best-quality
SGA solution. This is apparent in the figure, where we see that the highest sidelobe résulting
from the SGA solution exceeds that of hBOA by approximately 2.5 dB. Thus, for this case,
the SGA performance trails that of hBOA for both best fitness and average fitness.

The performance of the SGA is by far the worst for Case 3 (Table 3 and Figure 45).
hBOA outperforms the SGA by several orders of magnitude when comparing both best
fitness and average fitness. In addition, the standard deviation of the fitness F'; across runs is
zero for hBOA! The sidelobe attenuation of hBOA solution is -27dB, which is quite close to
the desired value of -30dB. By contrast, in the best SGA solution, it is difficult to identify a
mainlobe and worst-case sidelobes exist at -6dB.

Overall, these results are not surprising. The different objective functions represent
drastically different solution spaces. Case 1 involves forcing a function to a mask, which is
considered a GA-easy problem because taking average makes the fitness function landscape
smooth. Thus, we see that in this case the SGA performs comparably to hBOA. Cases 2 and
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3 are considered GA-difficult, because the min/max nature of the objectives give rise to a
solution space that contains many local minima. The SGA, therefore, easily fell into some
local minimum and was not capable of exploring the landscape globally. hBOA, on the other
hand, was able to better identify the linkage of the problem, which allowed it to recombine
salient pieces of information without disrupting good building blocks. The solutions obtained
from hBOA for Case 3 correspond to ~27—dB sidelobes across the entire frequency band of
operation. Thus, hBOA allowed us to come within 3 dB of our goal (i.e., -30 dB across
frequency). We are quite pleased with this result, considering the slightly degraded state of
the experimental Rotman lenses as discussed in Section 3.3.1.

Table 1: The results of the SGA and hBOA for CASE 1.

0.1194

0.1196

0.1198

(Mean)

0.1196

(STD)
0.0002

Table 2: The results of the SGA and hBOA for CASE 2.

i ‘;:2 I

1.7103

(Mean)
1.6782
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Table 3: The results of the SGA and hBOA for CASE 3.

(Mean)

(Mean)
0.0019

1.1350

(STD)

(STD)
0.2832 0

3.4 Summary/Conclusions .

This section investigated the application of both a simple GA and a competent GA to
the optimization of a constrained feed network for a linear array. Specifically, hBBOA, one of
the most successful competent GAs, was adopted. Several competent GA techniques,
including hierarchical decomposition, chunking, and niching, were discussed. Three
objective functions were designed to compare the performance of the SGA and hBOA. The
first objective function was designed to be GA-easy but did not completely reflect the desired
objective of the problem. The remaining two objective functions were GA-difficult but were
much more relevant to the problem objectives. For the GA-easy objective function, the
performance of the SGA and hBOA were comparable. When the objective functions became
more complicated (i.e, GA-difficult), the competent GA technique demonstrated significant
improvement over the SGA. In all three cases, the quality of the solutions that h(BOA gave is
more reliable than that the SGA gave.

, To conclude, for simple problems, SGAs are preferred since they are computationally
inexpensive and the solution quality is comparable to that of competent GAs. However, for
difficult problems, competent GAs should be adopted, because based on our observations,
competent GA techniques are able to achieve higher-quality solutions than SGAs.

4.0 Summary/Conclusions

The first half of the paper demonstrated the application of the SGA to several antenna
design and optimization problems covering diverse areas of interest —a testament to the broad
capacity of the SGA. We saw, however, that a great deal of fiddling with SGA parameters
and operators was necessary in order to achieve acceptable, high quality solutions. In
particular, we found that the chromosomal encoding scheme has a large impact on the
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solution quality, as well as the convergence time. Thus, one of the major drawbacks of using
a SGA is that it provides no method for matching genetic operators and coding.

The latter half of the paper discussed a new breed of GA, namely a competent GA, for
which the coding-operator match is no longer arbitrary. In fact, the competent GA is
designed to learn the correlations between different sets of variables encoded along the
chromosome. In this manner, the recombination operator can be designed to exploit these
correlations and minimize the probability of disrupting good “building blocks” while
maximizing the probability of finding a global solution to the problem.

A specific type of competent GA — the hierarchical Bayesian optimization algorithm
(hBOA) — was introduced. 'The SGA and hBOA engaged in head-to-head combat, both
attempting to find an acceptable solution to a challenging optimization problem involving a
complex, constrained feed network for an antenna array. The results demonstrated that the
SGA competes hBOA when the problem was GA-easy. When the problem became more and
more difficult, however, hBOA constantly outperformed the SGA in both computational and
electromagnetic aspects. This case study demonstrates the utility of using more advanced GA
techniques to obtain acceptable solution quality as problem difficulty increases.

Based on the success of this project, future collaborative efforts between the AFRL
Antenna Technology Branch and IIliGAL look promising. In particular, we would like to
take a closer look at the electrically small antenna research described in Section 2.3.7. Here,
we saw that three different chromosomal encoding schemes led to very different solutions. In
theory, a competent GA should be able to find a global, or near global, solution regardless of
the encoding scheme. Thus, this project will be a true test of the competent GA’s
capabilities.
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Figure 1: SGA parameters and operators

34




(4.1,4.6,150)

~—— (2016018

S eaan

(63:55,50) £ 204608

GROUND PLANE NN

Figure 2: Sketch of GPS/Iridium Antenna

35




. -

~ COMPUTED —

G - SN - R T 136

14 0%

s

Figure 3: (Fig.2) VSWR of GPS/Iridium

Antenna

36



Figure 4: Radiation Pattern of GPS/Iridium

Antenna
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Figure 7: Ultra-Wideband, Impedance-

Loaded Genetic Antenna
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Figure 8: VSWR of Ultra Wideband Antenna
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Figure 12: Experimental Configuration
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Figure 14: Experimental Radiation Pattern
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Problem Representation

Phase Shifter 8

Phase Shifter 1

+ Eight 8-bit Phase Shifters

Figure 15: Chromosomal Representation
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GRAYTABLES = [[0,0,0,0,0]
[0,0,0,0,1]
[0,0,0,1,1]
[0,0,0,1,0]
[0,0,1,1,0]
[0,0,1,1,1]
[0,0,1,0,1]
[0,0,1,0,01]
[0,1,1,0,01
[0,1,1,0,11]
[0,1,1,1,11
{0,1,1,1,01
[0,1,0,1,0]
(0,1,0,1,1]
(0,1,0,0,1]
(0,1,0,0,0]
{1,1,0,0,01]
{1,1,0,0,1]
{1,1,0,1,11]
{1,1,0,1,0]
(1,1,1,1,01
(1,1,1,1,11
(1,1,1,0,1]
(1,1,1,0,0]
(1,0,1,0,0]
{(1,0,1,0,1]
[1,0,1,1,1]
[1,0,1,1,0]
[1,0,0,1,0]
{1,0,0,1,1]
[1,0,0,0,11]
{1,0,0,0,011;

Figure 16: Example Gray-Coding Scheme
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Figure 17: The adaptive array model with
the SGA [12]. |
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Figure 18:

[12].

S ’-._|:..|| Phase Shlfter Nullmg .

-i :A'___'Settmgs Matrix with
: ;»Random 1s and Os -_;-_._};

. " :
;1 Measure Output
“Power: - e

COrrespondmg |

| Rank Settmgs and '{,'-: o
‘__-Dlscard Bottom 50%.{-:‘ s

: .Replace Dlscarded ‘fff"i
~-Settings with Newly. -

."'f;f'f.f _»Created Settmgs (Matmg)

Flow chart of the adaptive SGA
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Phase Shifter Nulling Measured Output

Settings (bits) Power
00 11 -20
01 00  gry— -15
» Array
1 10 (bl -5
10 01 -33

Nt e,
Element 1 4 t—Element 2

(@

10 01 =33 | Minimum Power

00 11 -20

01 00 -15

1 01 | =5 |Maximum Power
(b)

(10) (01}

(00) (113

()
Figure 19: A simple, bit-level example of the
genetic algorithm for a two-element array [1 2].
(a) Initial random matrix with corresponding
output powers; (b) Chromosomes are ranked
from lowest to highest output power (Note:
power is measured in dBm, i.e., dB relative to
1 milliwatt, therefore more negative numbers
represent smaller power measurements); (c)
lllustration of the mating process used to

produce M/2 children.
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Figure 20: The antenna pattern resulting
from weights (phase shifter settings)
produced by the SGA with an interfering

source at 45° [12].
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Figure 21: Measured (solid) and theoretical
(dashed) array beam patterns for the 20°
null. Theoretical patterns were calculated
from SGA-produced phase-shifter settings
and their corresponding phase shifts,
which were found in look up tables (i.e.,
calibration tables for the individual phase
shifters [13]). The phase shifts were used in

a far-field antenna pattern simulation.
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Figure 22: Measured (solid) and theoretical

(dashed) array beam patterns for the 15°

scanned beam [13].
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Figure 23: Typical subarray pattern
illustrating the shaded areas used to
calculate the cost function for the genetic

algorithm optimization.
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Figure 24: Skobelev (N = 2 case) subarray
pattern simulated using quadrature hybrid
coupler coupling coefficients obtained from
the SGA.
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(X15Y15Z1Zoi <« (Xp¥pZ)

- (X35Y35Z5)

Chromosome: Genes represent wire endpoints.

Gene: a floating point number (0-1 inclusive)

X, ¥, Z, are pseudo-coordinates

Pseudo-coordinates x desired cube size = NEC wire coordinates
Figure 25: The real-valued, Cartesian
coordinate-based genetic antenna
chromosome and a typical resulting
antenna. Note the straight-line

configuration.
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(XizY1sZi= (XipYrrZp) +(C0S 043002 By 005 043Ny, SN0y

(x1!Y1!lem al, O, s.

A o 2 A A Y il [

Chromosome: 2N - 1 genes, Az/H angles of N equalHength wire pieces
(connected in series) comprising antenna of fixed length, L (inA)

Gene: a nHhit, binary cydlic gray-coded angle (0-2n)

o, are elevation angles, 3, are azimuth angles.

Pseudo-coord. offsets [Ax, Ay, Az,] =([cos o,,cos B, cos o sinf},, sino, )

NEC wire coordinates = [X,.1, Y1 Zndl *+[AX;, Ay, AZ]ALN

Figure 26: The absolute angle genetic
antenna chromosome and a typical
resulting antenna. Some attempt to
represent a top-loaded helix is evident, but
suppressed by the non-optimal

chromosome encoding.
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(cos a,c0s B, 00s 0, Sin B, Sin 0y)

(x,y2F(cos o, 0, sinoy)

sl o]l ... [l

Chromosome: 2N - 1 genes, representing AAz/H angles of N equal-dength wire
ﬁecs(mededinwﬁes)cmp'isingataTadﬁxedla'gh L(in})
Gene: an-hit, binary cydic gray-coded angle (within +- 6)
Aq,a’edminelevaima'ge,ABnaedwgsazimmma
o=y tA, BB AR,
Pseudo-coord. offsets [Ax, Ay, Az,] =([cos o;, cos 3, cos o, sinf3,, sino,])
NEC wire coordinateS = [X. 4, Vo1 Zodl + 5%, AYy AZJALN

Figure 27: The relative angle genetic
antenna chromosome and a typical
resulting antenna. Note the approximation
to a curvy shape resembling a top-loaded

helix.
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Figure 28: Comparison of VSWR
performance for the Cartesian coordinate,
absolute-angle, and relative-angle GAs and
a normal mode helix. Measured data and
the results of hand-smoothing the relative-

angle antennas are also included.
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Figure 29: The 0.05A relative-angle,
electrically-small, bent-wire antenna, whose
measured VSWR is depicted in Figure 28.
This antenna outperformed both the normal
mode helix and other previously

constructed genetic antennas for this cube-

size.
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- Effective Gain
== Desired Gain

= (Gain error
- = VSWR error

} QR

Figure 30: The original DISS Tx antenna —
an off-the-shelf TClI 613 communications

. antenna.
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Figure 31: A schematic of the genetic DISS
hybrid antenna design and the chromosome

uSed to encode it into the SGA.
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Figure 32: The genetic DISS hybrid Tx
antenna. Note the significantly improved
gain over that shown in Figure 30. The
VSWR, although not as low as the TCI

across the entire bandwidth, is acceptable.
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Figure 33: A schematic of the 3-dish

reflector array used to illuminate the target
on the pylon for RCS (radar cross section)

measurements on the RATSCAT ground-

bounce range.
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Figure 34: The power taper on the pylon
resulting from the SGA configuration of the
reflector dish array. Note the flat power
pattern achieved across the target area (30-
40 ft), which is essential to accurate RCS

measurements.
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Figure 35: An example of a Bayesian

network structure.
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Normal Incoming Plane

]

/
/

Array Elements
gements | g

YYXYYY‘.’!YYYYYY ]
"— -~~ Front-end
| ;’ \\ Antenna
N Input Ports D
ROPrUMAN Arrey
LENS

/M Output Ports\

e

Center M/2 Output Signals

Figure 36: Single section of antenna system, including

front-end array, Rotman lens, and Butler matrix.
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Figure 37: Far-field radiation patterns as a
function of frequency for the optimized

ideal system.
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Figure 38: Inverse-transfer-function for a
single Rotman lens (phase only).' Ideal data:
solid, real data: dotted. Output Ports: 1 -
square, 2 - “+”, 3 - circle, 4 - **”, § -~

diamond, 6 — triangle, 7 — star, 8 — “x”.
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Figure 40: Chromosomal encoding scheme
for SGA
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Figure 41: Objective Function for Case 1
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Figure 42: Objective Function for Cases 2 and 3
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CASE 1, Run 1: f=9.00 GHz
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Figure 43: SGA vs. hBOA performance, CASE 1, Run 1. Solid: hBOA,
dotted: SGA.
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CASE 2 Run 1: f=9.00 GHz
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Figure 44: SGA vs. hBOA performance, CASE 2, Run 1. Solid; hBOA,

dotted: SGA.
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Figure 45: SGA vs. hBOA performance, CASE 3, Run 1.

Solid: hBOA, dotted: SGA.
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